
ManagementManagementManagementManagement

Vol.12, Nr. 2/2009 Economia. Seria Management

162

Lean principles applied to software

development – avoiding waste

Principiile Lean aplicate în dezvoltarea de software
– evitarea pierderilor

NĂFTĂNĂILĂ Ionel
The Bucharest Academy of Economic Studies, Romania

e-mail: ionel@naftanaila.ro

BRUDARU Paul
The Bucharest Academy of Economic Studies, Romania

e-mail: paulbrudaru@yahoo.com

Abstract

Under the current economic conditions many organizations strive to continue the
trend towards adopting better software development processes, in order to take advantage
of the numerous benefits that these can offer. Those benefits include quicker return on
investment, better software quality, and higher customer satisfaction. To date, however,
there is little body of research that can guide organizations in adopting modern software
development practices, especially when it comes to Lean thinking and principles. To
address this situation, the current paper identifies and structures the main wastes (or muda
in Lean terms) in software development as described by Lean principles, in an attempt to
bring into researchers’ and practitioners’ attention Lean Software Development, a modern
development methodology based on well-established practices such as Lean Manufacturing
or Toyota Production System.

Keywords: Lean, software development, agile methodologies

Rezumat

În condiţiile economice actuale, o serie întreagă de organizaţii încearcă să
continue trendul de adopţie a unor procese mai performante de dezvoltare a programelor
informatice, pentru a beneficia de numeroasele beneficii oferite de aceste procese.
Potenţialele beneficii includ o mai bună rată de recuperare a investiţiei, o calitate mai
ridicată a programelor informatice, sau o mai bună satisfacţie a clienţilor. Totuşi, până la
momentul actual există o serie limitată de cercetări care să ghideze organizaţiile în
adoptarea practicilor moderne de dezvoltare de software, în special atunci când este vorba
despre teoria şi principiile Lean. Pentru a remedia această stare de lucruri, lucrarea de
faţă identifică şi structurează principalele pierderi (eng. waste sau muda în terminologia
Lean) din dezvoltarea de software, într-o încercare de a aduce în atenţia cercetătorilor

ManagementManagementManagementManagement

Economia. Seria Management Vol.12, Nr. 2/2009

163

şi practicienilor metodologia de dezvoltare de software Lean, bazată pe practici bine
stabilite şi fundamentate, cum ar fi Lean Manufacturing sau Toyota Production System.

Cuvinte-cheie: Lean, dezvoltare software, metodologii agile

JEL Classification: M15

Introduction

ince he beginning of the current world financial crisis many

technology-driven companies have suffered the effects, being

forced to lay off people or drastically diminish costs (Wauter,

2009). The survival of the company itself becomes dependant of the time-to-

market, deliver on time to the customer and minimize costs. The scientific

literature abounds of examples in which the success of projects drive the success of

companies, or, the other way around, the failure of a project puts the company out

of business (Charette 2005), (Voas and Whittaker, 2002), (Jones, 1995). As a

consequence, minimizing risk and approaching projects in a structured manner

become critical success factors. Over the past few years software development

organizations have learned about the benefits of Agile Methodologies, such as

Scrum and XP. On the other hand, at the level of years 2008-2009 a researcher can

identify a trend in the practitioners’ literature (blogs, Internet sources, etc.) which

shows an increase of the Lean methodology adoption efforts. As a consequence,

while many organizations undertake significant efforts to implement Agile

methodologies, the outlook of business consultants and project management

practitioners in the field of software development extends to Lean practices.
However, little if none scientific research is to be found on the subject of

implementing Lean software development methodologies in organizations. The
most literature available is represented (with a few notable exceptions such as
Poppendieck, 2007) by case-studies and anecdotal evidence, which, although a
good starting point, needs to be extended by further, more systematic research.

Lean Development

Lean methodologies were not created with the special purpose of

improving software development efforts. They usually address matters of
increasing efficiency in production systems by eliminating waste and by
implementing the “right” processes. As a general principle, the Lean
methodologies consider the human resource as being the most flexible resource of
the system; however, discipline is needed with regard to the moment when
decisions are made. The Lean production systems consist basically of a process
formed of five steps: defining value for the client, defining the value chain,

S

ManagementManagementManagementManagement

Vol.12, Nr. 2/2009 Economia. Seria Management

164

improving the value chain by “pulling”, and continuous search for excellence
(Womack and Jones, 2003).

In the IT literature there is a small confusion regarding the usage of term
Lean. This term has been introduced in the Information Technology industry a long
time ago, early versions of the Lean concept being built on top of Deming’s team
centric management concept, statistical quality control and process improvement
(Deming, 1996), (Deming, 1993). These concepts have later been known as Total
Quality Management (TQM) and the respective concepts have started to be used in
a variety of activity fields. The Lean ideas have been incorporated as fundamental
determinants of ISO or Six-Sigma standards, and as a consequence have been used
in software development in a plethora of industries. Usually the software
development projects have used a version of Lean based on quality, based on
Deming’s work on statistical quality control and continuous improvement (Scheer,
2005). These early initiatives have pushed the software development industry on a
path of intensive measurements, statistical indicators, well-defined processes and
large amount of documentation – a path which uselessly overloaded the software
development budgets, without necessarily bringing productivity increase at the
industry level.

Meanwhile, operations management (Bărbulescu and Bâgu, 2001), (Badea
and Bâgu, 2006) has discovered the Toyota Model (Toyota Production System or
TPS) which started with Deming’s TQM but evolved independently between
1950’s and 1970’s. The Toyota Model became the reference model for what
currently is known as Lean Manufacturing. Although its TQM roots are quite
obvious, the base concepts of Lean manufacturing are quite different from TQM.

Lean product design represents a relatively new concept (Badea and
Burdus, 2009). This methodology has been developed by the Toyota design
studios, and represents the approach used with large success by Toyota for
designing new car models. Toyota has adapted key concepts of Lean
manufacturing to the environment of design studios, which is radically different
from a car assembly facility. The Toyota success has lead to imitation and
improvement trials from many industries, including the software development
industry.

The Lean basic concept, which is avoiding overproduction, can be also
found in the Lean development methodologies, but under unexpected forms. For
instance, development of any artefact (function, procedure, class) which is not
going to be consumed immediately can be considered overproduction. This also
applies to requirements, use-cases, test plans, status reports and other artefacts
which are regularly used in software development projects. For instance, when the
requirements are over-detailed, the project’s ability to adapt to change from client
can be seriously compromised. The solution proposed by Lean methodology is to
regulate the product of all artefacts by “pulling” them from the client. Lean
methodology proposes to detail the requirements as late as possible (when the most
things are known about the requirements) but in any case before they become
necessary (Poppendieck and Poppendieck, 2006).

There are fundamental differences, though, between Lean manufacturing
and Lean software development; for instance, Lean manufacturing is not placing a

ManagementManagementManagementManagement

Economia. Seria Management Vol.12, Nr. 2/2009

165

significant importance over the moment when decisions are made; Lean software
development, on the other hand, is very strict on this aspect.

A Lean initiative in a product development environment is centered on
eliminating waste, and creating quality “from the first time”. The techniques used
in a Lean project, although sophisticated and quantitative, are not statistical by their
nature. One cannot introduce statistical quality control over creative, development
or designing processes. In this regard, Lean is very different from TQM.

The main seven manufacturing wastes, as identified by Shigeo Shingo
(Shingo and Dillon, 1989) are:

• In-process Inventory

• Over-Production

• Extra Processing

• Transportation

• Motion

• Waiting

• Defects

By analogy, the main seven software development wastes, as identified by
Mary and Tom Poppendiek ((Poppendieck and Poppendieck, 2003) are:

• Partially done work

• Extra Features

• Re-learning

• Handoffs

• Task Switching

• Delays

• Bugs

From all these wastes, partially done work is probably the most significant
one. In Lean terms, this would be identified with work-in-progress, which
essentially is waste, because until completed, the development team and the project
manager will not know about quality issues, deployment on production issues, or
customer satisfaction. Examples of partially done work can be: code that is
completed but not checked-in on the version control systems, undocumented code,
untested code (this refer to unit tests and functional tests), code that exists on the
test environment but not on the production environment, code that is commented
(Milunsky, 2009a).

Overproduction, as said above, is another significant waste that Lean
addresses in the process of software development. In manufacturing, it refers to
good or services that are not immediately needed or acquired by a customer.
Basically it translates to inventory, which in turn translates into costs (as inventory
can become obsolete, can be damaged, has storage costs, etc.). In software
development, overproduction refers to features that are not really needed by users,
or to “frameworks” which are supposedly going to make further developments
easier, but will never be actually used. The reason for developing these never-to-

ManagementManagementManagementManagement

Vol.12, Nr. 2/2009 Economia. Seria Management

166

be-used features comes directly from the waterfall approach – which would force
the product managers to think ahead all the necessary features for long-term
projects – which in turn would lead them to anticipate users’ needs and invest time,
funds and energy into building software that is never going to be used.

The reason for which overproduction is wasteful is due to adding direct
costs of development, but also indirect costs of maintaining a significantly more
complex code base, introducing unnecessary bugs, creating poor-performing
applications, etc.

Relearning is considered as being the third-most-important waste in
software development. It refers to the time spent learning things that once were
known by the development team, or the time spent to rework already completed
features, due to poor code quality. Several examples of this type of waste:

• Undocumented code – if the developers won’t document the code
while it is fresh written, the code would need to be re-learned when
subsequent natural changes are going to arise, or when bugs are going
to show-up. Therefore, if the code is not properly documented,
company could lose money and valuable time for re-learning.

• Poor planning – if project managers randomly assigns developers to
features, each time a developer takes over a piece of code written by
someone else, a natural learning process must occur; therefore, the
company would lose time and money by allowing someone to learn
details which are already known by someone else. There are situations
when overlapping is to be considered best-practice, but this usually
refers to critical sections of the application, and needs to be done in a
well controlled manner.

• Poor quality – the most costly moment of fixing bugs is after the
application has been deployed to production environment. This is
mainly due to the fact that the developer has to re-learn the code (even
if it’s the same developer who initially wrote the code). Therefore, if
the developer properly writes unit tests, and if the team takes the time
to define proper acceptance test criteria, then the odds of reworking the
code and consequently to relearn it diminish substantially.

• As demonstrated by Eliyahu Goldratt in Critical Chain (Goldratt,
1997), multitasking or task switching significantly increases
development time, due to (along with other reasons) the developer
having to re-learn the task at hand each time he or she switches back
and forth.

• Poor communication and knowledge management is another factor
which would lead to waste due to re-learning. However, in the modern
days, with proliferation of wiki tools and other knowledge-sharing
systems, along with search features, communicating between team
members should not be a problem – at least from a technological
standpoint. Proponents of Lean do not advocate a great deal of
documentation, but instead a minimum set of notes over critical

ManagementManagementManagementManagement

Economia. Seria Management Vol.12, Nr. 2/2009

167

development decisions, so that the initial developer or someone else
taking over the job would spend as little time as possible in getting re-
acquainted with the task.

Handoffs, in software creation, correspond to transportation processes in
product manufacturing. Every time a developer delivers a piece of code to a
different party, there is a certain loss involved in the process of knowledge transfer.
Examples of hand-offs can be:

• A developer hands-off the code to a second developer. In this kind of
situation, if the first developer did not document the code properly, the
second one will have a very steep learning curve in trying to figure out
the code already written. Moreover, he or she can make assumptions
which might prove wrong, and therefore introducing unnecessary bugs
in the system.

• A developer hands-off the code to testers. If Quality Assurance teams
have no clue about what the software they are testing is supposed to
do, and how it is supposed to work, they are likely to test for features
which were never intended, or to overlook bugs in the very core of the
application. It is important therefore that the developer properly
documents the feature so that transition from one team to the other is
as effective as possible.

• The development team hands-off the code to the client. An example of
waste due to transition from the development team to the client is the
increase in the number of support calls if the software is not properly
documented and tested.

Practitioners of the field recommend a series of measures to
counterbalance transportation wastes in software development (Milunsky, 2009b):

• Open communication between parties.

• Where needed, existence of proper documentation.

• Inclusion of all functional areas in the organization in the development
process.

Task switching is a well-known and documented source of waste in
projects in general, and in software development in particular. As shown above,
each time a developer switches back and forth from one task to the other, a
significant amount of time is wasted in order to re-learn the task at hand and to get
into the flow of work. Matters get worse when a developer belongs to several
development teams at once – situation which is fairly common; in this case,
interruptions are more frequent, and therefore task switching occurs more often. E.
Goldratt has shown in Critical Chain (Goldratt, 1997), that if, for instance, a
developer starts concomitantly two projects, each of them with an estimated
duration of one week, none of the projects will be finished in one week, whereas
there is a significant probability that both projects will not finish in two weeks
either. When the waste due to task switching is added, probably both projects will
finish in about two and a half weeks. By comparison, if the developer would tackle
only one project at a time, at least one of the projects will be done in one week, and

ManagementManagementManagementManagement

Vol.12, Nr. 2/2009 Economia. Seria Management

168

the other will be done after two weeks – and in addition there’s no switching time
to take into consideration.

It is usually difficult for managers to resist temptation to release more than
one project in the organization pipeline. However, releasing too much work at once
will slow things down, instead of increasing productivity (Goldratt, 1984).

One of the biggest wastes in software development in general is usually
waiting, or delays. There are multiple types of delays in software development:
waiting for someone else to finish their task, waiting for an approval, waiting for a
project to start, waiting for a specialist to get hired or integrated in the project team,
waiting for testers to provide feedback or waiting for the deployment team to do
their part of the job.

The major problem with delays in software development is that they
prevent the customer from obtaining the business value from the product as soon as
possible. As a consequence, the speed at which the software development
organization can respond to a new customer demand is directly proportional to the
systemic delays within the organization’s development process. Delays are
therefore, from a Lean point of view, waste – and one of management’s priorities
should be to minimize these delays in the development cycle. One of Lean’s most
important principles, as shown above, is to delay decisions as much as possible, in
order to make well-informed decisions; however, if decisions, once made, cannot
be implemented rapidly, they can compromise the whole process of development.

Bugs – or defects – represent the most common-known source of waste in a
software development organization. They represent waste not only taking into
account the time spent by developers to find, isolate and fix them, but also the
potential financial losses brought to the company as the result of malfunction. A
critical bug identified early in the development cycle (ex. unit testing) is not a
major waste. On the other hand, a minor problem identified only after the system is
in production stage and users are already relying on the system can be a much more
serious source of waste. From this perspective Lean software development
completes very well with Agile methodologies such as Scrum and XP, which stress
the importance of unit testing and continuous integration throughout the whole
project development cycle (Beck, 1999).

Lean versus Agile

At its base, Lean represents a managerial approach to improving

production systems. Lean is a methodology responsible for significant
developments in productivity and quality over the last decades, and it is
successfully used in industries which range from factories or logistics to
pharmaceuticals or product development (Liker, 2003).

Agile, on the other hand, is extremely specific to software development
projects. Agile facilitates productivity increase by raising the level of client
responsibility, focusing on creating the software itself, and not on creating plans or
documents. At its roots, the Agile philosophy is based on three things: it assumes

ManagementManagementManagementManagement

Economia. Seria Management Vol.12, Nr. 2/2009

169

that the specifications cannot be established at the beginning of a project and uses
iterations and client interaction in order to identify necessary functionalities.
Secondly, imposes a very strict discipline from a quality control point of view; and
thirdly, it depends on the existence of a professional team which can efficiently
fulfill the key tasks.

Lean and Agile overlap with regard to the concept of taking in
consideration the changes which occur late in the process. The older
methodologies, such as cascade methodologies, are often criticized for their
inability to adapt the changes which intervene on the lifecycle of the project; both
Agile and Lean are specially designed to accommodate these changes. Lean is not
only prone to adapt to this type of change, but also encourages taking major
decision as late as possible.

Also, one important thing to consider with regard to Agile methodologies
in general, and Scrum in particular, is that they are designed to focus the team on
delivering only the most important features, in a just-in-time manner, which would
help mitigate the risk of overproduction, described above.

A software project can be Agile without being Lean, or can be Lean
without being Agile. There is no direct clear link between the two concepts;
however common understanding leads to the fact that they complete each other
very well in a software development organization (Poppendieck and Poppendieck,
2003).

Conclusions and further research

Lean Software Development is an emerging paradigm; while the

researchers and theorists of software development processes have shown little
interest so far for the principles and practices of Lean Thinking applied to this
field, practitioners have already started to apply these principles.

The current paper analyses the applicability to software development of the
seven main wastes proposed by Lean. The paper identifies and analyzes each waste
type, by mapping the general types of waste to the particular processes of software
development. While a series of blog posts and articles have emerged on the Internet
in the latter period about the subject, there are basically no significant research
papers, most of them being case studies and anecdotic evidence. Therefore, there is
a strong need for more empirical studies in this field; from this perspective, the
current paper can constitute the departure point, as it synthesizes and structures the
most significant research contributions to-date. From a practitioner’s perspective,
the current paper can be used as a first step in implementing Lean Thinking in
software development, by providing a comprehensive synthesis of the most
significant sources of practical knowledge.

While one of the conclusions that can be drawn from the above analysis is
that without doubt using Lean brings substantial benefits to the companies, the
current paper also shows that the current state of research lack of studies which
analyses use and implementation of Lean practices in software teams and
organizations.

ManagementManagementManagementManagement

Vol.12, Nr. 2/2009 Economia. Seria Management

170

References

Badea, F., and Burdus, E. (2009). „Contributions on the Lean Management in the current
evolution of a company”. Economia. Management, Vol. 12 (1), pp. 168 - 179

Badea, F. and Bâgu, C. (2006). Managementul Producţiei: Studii de caz şi proiect
economic. Bucureşti: Editura ASE.

Bărbulescu, C. and Bâgu, C. (2001). Managementul Producţiei. Bucureşti: Tribuna
Economică.

Beck, K. (1999). Extreme Programming Explained: Embrace Change, US Edition ed.
Extreme Programming Explained: Embrace Change.

Charette, R. N. (2005, Sep.). IEEE Spectrum. Retrieved from:
http://www.spectrum.ieee.org/sep05/1685

Deming, E. W.(1996).Out of the Crisis. Cambridge, Massachusetts: MIT.

Deming, E. W.(1993). The New Economics: For Industry, Government, Education.
Cambridge, Massachusetts: MIT.

Goldratt, E. M. (1984). The Goal. Great Barrington: North River Press.

Goldratt, E. (1997). Critical Chain. Great Barrington, MA: The North River Press
Publishing Corporation.

Jones, C. (1995). "Patterns of Large Software Systems: Failure and Success," Computer,
vol. 28, no. 3, pp. 86-87

Liker, J. (2003). The Toyota Way. McGraw-Hill.

Milunsky, J. (2009a). agilesoftwaredevelopment.com. Retrieved from:
http://agilesoftwaredevelopment.com/blog/jackmilunsky/7-wastes-part-1-partially-
done-work

Milunsky, J. (2009b). agilesoftwaredevelopment.com. Retrieved from:
http://agilesoftwaredevelopment.com/blog/jackmilunsky/7-software-development-
wastes-lean-series-part-4-transportation.htm

Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development: An Agile
Toolkit. Addison Wesley.

Poppendieck, M. and Poppendieck, T. (2006). Implementing Lean Software Development:
From Concept to Cash, 1st ed. USA: Addison-Wesley.

Poppendieck, M. (2007). "Lean Software Development," in Companion to the proceedings
of the 29th International Conference on Software Engineering, Washington, pp. 165-
166.

Shingo, S. and Dillon, A. P. (1989). A Study of the Toyota Production System: From an
Industrial Engineering Viewpoint (Produce What Is Needed, When It's Needed), 1st ed.
Productivity Press.

Scheer, T. (2005, Sep.). Sphere of Influence Inc. Retrieved from:
http://sphereofinfluence.com/soiblogs/tscheer/archive/2005/09/19/159.aspx

Voas, J. M.and Whittaker, J.A., (2002). "50 years of software: key principles for quality,"
IT Professional, pp. 28-35.

Wauter, R. (2009, Jan.). TechCrunch. Retrieved from:
http://www.techcrunch.com/2009/01/22/sad-day-for-microsoft-5000-laid-off-earnings-
and-revenues-down/

Womack, J.P. and Jones, D.T. (2003). Lean Thinking: Banish Waste and Create Wealth in
Your Corporation. New York: Free Press.

